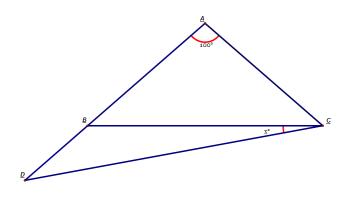
100 deg Isosceles Triangle

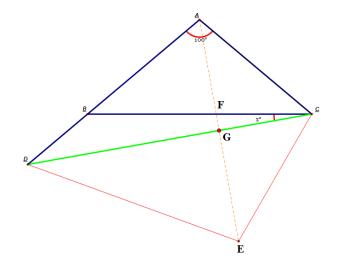
Problem: Given an isosceles triangle ABC with AB = AC and the measure of angle BAC = 100 degrees. Extend AB to point D such that AD = BC. Now draw segment CD. What is the measure of angle BCD? Prove your results by geometric reasoning, rather than measuring.



Solution:

Given $\triangle ABC$ is isosceles with AB = AC and $\angle BAC = 100^{\circ} \implies \angle ABC = \angle ACB = 40^{\circ}$.

Now, let's look at the Equilateral Triangle, ΔADE , constructed below:



So, $\angle BAC = \angle CAF + \angle BAF = 100^{\circ}$.

This implies that $\angle CAF = 40^{\circ}$ (since $\angle BAF = 60^{\circ}$)

So, $\angle CAF \cong \angle ACF$. Hence $\triangle ACF$ is also isosceles. So, AF = CF.

Now, since BC = AD = AE. It implies, $BC = AE \implies BF + FC = AF + FE$

We have seen that FC = AF, so we have BF = FE

Additionally, $\angle AFB = \angle CFE$ (since vertical angles)

Hence, $\triangle AFB \cong CFE$

So, AB = CE = CA.

Now, considering $\triangle ADC$ and $\triangle CDE$ we have

AC = CE, AD = DE, and CD is common

So, $\triangle ADC \cong \triangle CDE$ and these two triangles form a "kite" quadrilateral. Hence, *CD* is perpendicular bisector of segment *AE*.

So, $\angle AGC = \angle CGE = \angle DGE = \angle AGD = 90^{\circ}$

Now, on ΔFGC , $\angle CFG = 80^{\circ}$, $\angle CGF = 90^{\circ}$

So, $\angle FCG = \angle BCD = \angle x = 180^{\circ} - 90^{\circ} - 80^{\circ} = 10^{\circ}$

